EMERGENCY PROCEDURES

TABLE OF CONTENTS

PARA	GRAPH	PAGE
3.1	GENERAL	3-1
3.2	CERTAIN AIRSPEED IN EMERGENCIES	3-2
3.3	GLIDING	3-2
3.4	ENGINE SECURING	3-3
3.5	AIRCRAFT EVACUATION	3-3
3.6	ENGINE FAILURE DURING TAKE-OFF RUN	3-4
3.7	ENGINE FAILURE AFTER TAKE-OFF	3-4
3.8	RESTARTING ENGINE WITH WINDMILLING PROPELLER	3-5
3.9	PROPELLER OVERSPEED	3-6
3.10	CHT LIMIT EXCEEDANCE	3-7
3.11	HIGH OIL TEMPERATURE	3-8
3.12	LOW OIL PRESSURE	3-9
3.13	HIGH OIL PRESSURE	3-10
3.14	LOW FUEL PRESSURE	3-10
3.15	HIGH FUEL PRESSURE	3-11
3.16	ENGINE FIRE DURING GROUND OPERATION	3-11
3.17	ENGINE FIRE DURING TAKE-OFF	3-12
Rev. 7 DATE	: 16 November 2017	3-i

EMERGENCY PROCEDURES

TABLE OF CONTENTS

PARAGRAPH		PAGE
3.18	ENGINE FIRE IN FLIGHT	3-13
3.19	FORCED LANDING WITHOUT ENGINE POWER	3-14
3.20	POWER-ON FORCED LANDING	3-15
3.21	UNINTENTIONAL FLIGHT INTO ICING CONDITIONS	3-16
3.22	RECOVERY FROM UNINTENTIONAL SPIN	3-17
3.23	DOOR CLOSURE FAILURE	3-17
3.24	ALTERNATOR FAILURE	3-18
3.25	COMPLETE ELECTRICAL FAILURE	3-19
3.26	PFD FAILURE	3-20
3.27	AIRSPEED FAILURE	3-21
3.28	ALTITUDE FAILURE	3-21
3.29	ATTITUDE FAILURE	3-21
3.30	OAT SYSTEM FAILURE	3-22
3.31	VERTICAL SPEED FAILURE	3-22
3.32	HSI FAILURE	3-22
3.33	RATE OF TURN INDICATOR FAILURE	3-23
3.34	MFD FAILURE	3-23

EMERGENCY PROCEDURES

TABLE OF CONTENTS

PARAGRAPH		PAGE
3.35	BOTH PFD AND MFD FAILURE	3-23
3.36	GPS FAILURE	3-24
3.37	NAV 1 FAILURE	3-24
3.38	NAV 2 FAILURE	3-24
3.39	COM 1 FAILURE	3-25
3.40	COM 2 FAILURE	3-25
3.41	GLIDESLOPE FAILURE	3-25
3.42	TOTAL ENGINE PARAMETERS FAILURE	3-26
3.43	BUS BAR VOLTAGE ALERTS	3-26
3.44	AMMETER FAILURE	3-26
3.45	MAP INDICATOR FAILURE	3-27
3.46	RPM INDICATOR FAILURE	3-27
3.47	CHT INDICATOR FAILURE	3-27
3.48	EGT INDICATOR FAILURE	3-27
3.49	FUEL FLOW INDICATOR FAILURE	3-28

- THIS PAGE INTENTIONALLY LEFT BLANK -

EMERGENCY PROCEDURES

3.1 GENERAL

The recommended procedures for various types of emergencies and critical situations are provided in this section. All the required emergency procedures and those necessary for operation of the aircraft as determined by its operating and design features are presented.

This Section consists of an abbreviated emergency check list which supplies critical situation action sequences. Pilots should familiarize themselves with the procedures given in this Section in order to be prepared to take appropriate action when an emergency situation arises.

In case of emergency the pilot should acts as follows:

- 1. Maintain aircraft control
- 2. Analyse the situation
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control if time and conditions permit

The following definitions apply:

Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured.

Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

3.2 CERTAIN AIRSPEED IN EMERGENCIES

(a) Airspeed for Best Glide Angle (flaps UP)

80 KIAS

3.3 GLIDING

Flaps

UP

Airspeed

80 KIAS

3.4 ENGINE SECURING

Following procedure is applicable to shut-down the engine in flight.

(a)	Throttle	IDLE
(b)	Ignition key	OFF
(c)	Fuel selector	OFF
(d)	FUEL PUMP switch	OFF
(e)	ALT switch	OFF

WARNING

Shut-down the engine in flight <u>only</u> in case of engine fire. Any other intentional shut-down of engine in flight is forbidden.

3.5 AIRCRAFT EVACUATION

With the engine secured and propeller stopped (if practical):

(a) Parking brake	ON
(b) Seat belts	UNSTRAP
(c) Headphones	REMOVE
(d) MASTER BATTERY switch	OFF
(e) Door	OPEN
(f) EVACUATE AIRCRAFT	As soon as possible

3.6 ENGINE FAILURE DURING TAKE-OFF RUN

If engine fails before rotation, take-off can be still aborted (sufficient runway length available)

(a) Throttle		IDLE
(b) Mixture		CUT-OFF
(c) Brakes		AS REQUIRED
With aircraft	stopped:	
(d) Ignition k	ey	OFF
(e) Fuel selec	tor	OFF
(f) FUEL PU	MP switch	OFF
(g) ALT swit	ch	OFF
(h) MASTER	BATTERY switch	OFF
(i) Parking b	rake	ENGAGED
(j) AIRCRA	FT EVACUATION procedure	PERFORM if necessary

3.7 ENGINE FAILURE AFTER TAKE-OFF

If engine fails immediately after becoming airborne, ABORT on the runway if possible, otherwise:

(a)	Throttle	IDLE
(b)	Mixture	CUT-OFF
(c)	Brakes	AS REQUIRED
(d)	LAND	As soon as possible

WARNING

In the take-off cannot longer be aborted and a safe height has not been reached, a straightahead emergency landing should be carried out with only small changes in directions not exceeding 45° to the left and 45° to the right. Turning back can be fatal.

With aircraft stopped, and if time allows:

vulcanair

V1.0

aircraft

(e)	Ignition key	OFF
(f)	Fuel selector	OFF
(g)	FUEL PUMP switch	OFF
(h)	ALT switch	OFF
(i)	MASTER BATTERY switch	OFF
(j)	Parking brake	ENGAGED
(k)	AIRCRAFT EVACUATION procedure	PERFORM if necessary

3.8 RESTARTING ENGINE WITH WINDMILLING PROPELLER

Restarting the engine is possible at all airspeeds above 80 KIAS within the normal operating envelope of the airplane.

(a)	Airspeed	BEST GLIDE SPEED 80 KIAS
(b)	Fuel tank selector	FULLEST TANK
(c)	Ignition key	CHECK BOTH
(d)	Mixture control lever	CHECK APPROPRIATE POSITION (full rich below 5000 ft)
(e)	FUEL PUMP switch	CHECK ON

DATE: 03 December 2015

(f) Throttle control lever

If the engine does not start:

(g) Mixture control lever

CAUTION

Do not engage the starter if propeller is windmilling. Engine damage may result.

If it is not possible to start the engine:

FORCED LANDING WITHOUT

(h1) ENGINE POWER procedure

If the engine starts successfully:

(h₂) LAND

-

CAUTION

It must be expected that engine restart is impossible after an engine fire.

CAUTION

After engine restart allow the temperatures for stabilazing in the green arcs.

3.9 PROPELLER OVERSPEED

In case of propeller overspeeding in flight:

(a)	Throttle	REDUCE power
(b)	Mixture	AS REQUIRED
(c)	RPM indicator	CHECK
(d)	Friction adjuster for throttle quadrant	CHECK

LEAN then PUSH FWD SLOWLY

vulcanair aircraft V1.0

SET APPROPRIATE (minimum ¹/4" stroke)

PERFORM

As soon as possible

PERFORM

DATE: 03 December 2015

- vulcanair aircraft
 - (e) Oil pressure indicator

(following a loss of oil or oil pressure, the propeller governor sets a high RPM. In this case the RPM should be regulated using the throttle)

If oil pressure is normal:

(f) RPM lever PULL BACK (and listen for an associated drop in RPM. If there is no audible drop, RPM should be regulated using the throttle)

If it is not possible to decrease propeller rpm:

(g) LAND

As soon as possible (applying forced landing procedure)

CAUTION

Maximum propeller rpm exceedance may cause powerplant components damages. Apply caution when accelerating with power lever close to max and monitor engine RPM. RPM overspeed shall be prevented by retarding power lever.

CHT LIMIT EXCEEDANCE 3.10

If CHT exceeds maximum limit:

(a) Throttle	REDUCE power as practical
(b) Mixture	RICH as required
(c) CHT	VERIFY DECREASING
(d) Oil temperature indicator	CHECK
If oil temperature is also high:	
(e) Oil pressure indicator	CHECK
DATE: 03 December 2015	3-7

CHECK

If CHT stabilizes in the green arc:

(f₁) CONTINUE FLIGHT

If CHT continues to rise and engine shows roughness:

(f₂) LAND

As soon as possible (applying forced landing procedure)

3.11 HIGH OIL TEMPERATURE

WARNING

Oil temperatures above the limit value of 245°F (118°C) can cause a total loss of power due to engine failure.

If oil temperature exceeds maximum limit: HI O-T message on RAD display

(a) Throttle	REDUCE engine power
(b) Mixture	RICH as required
(c) Oil temperature indicator	CHECK
(d) CHT and EGT	CHECK
If CHT or EGT is also high:	
(e) Oil pressure indicator	CHECK
If oil temperature does not decrease:	
(f) Airspeed	INCREASE
(g) Oil temperature indicator	CHECK
If oil temperature does not come back within limits:	<u>.</u>
(h_1) LAND	As soon as practical

AFM 10.701-7 Section 3 EMERGENCY PROCEDURES

(with engine set to the minimum necessary power)

If engine roughness, vibrations, erratic behaviour or high CHT is detected:

(h₂) LAND

As soon as possible (applying forced landing procedure)

WARNING

If high oil temperature is announced and oil pressure indication is within green range, it can be assumed that there is no technical defect in the engine oil system, hence the above mentioned procedure could improve engine cooling and lower oil temperature. Increase by descending if situation permits.

NOTE

Maximum oil temperature limit exceedance can be the final effect of different causes: excessive friction between moving engine components, or oil leakage from the circuit (with related pressure reduction).

3.12 LOW OIL PRESSURE

WARNING

Oil pressures below the limit value of 25 psig can cause a total loss of power due to engine failure.

If oil pressure is under the lower limit: LO O-P message on RAD display

DATE: 03 December 2015	3-9
(d) CHT	CHECK
(c) Oil temperature indicator	CHECK within limits
(b) Mixture	AS REQUIRED
(a) Throttle	REDUCE to minimum practical

If oil temperature and /or CHT is high or it is rising:

(e) E	Engine power	REDUCE to the minimum required
(f) F	PREPARE for engine failure and en	nergency landing
(g) I	LAND	As soon as possible (applying forced landing procedure)
3.13	HIGH OIL PRESSURE	

If oil pressure exceeds upper limit: HI F-P message on RAD display

(a) Throttle	REDUCE engine power by 10%
(b) Oil pressure indicator	CHECK
(c) Oil temperature indicator and CHT	CHECK
If oil pressure does not increase:	

(d) LAND As soon as possible (applying forced landing procedure)

3.14 LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit: LO F-P message on RAD display	
(a) FUEL PUMP switch	ON
(b) Fuel flow indicator	CHECK
If fuel flow is high, there is possibly a leak:	
(c ₁) LAND	As soon as possible

If fuel flow is not high:

 (c_2) Fuel selector

- SELECT opposite fuel tank if NOT empty
- (d) Fuel quantity indicator

CHECK

If fuel pressure does not build up:

(e) LAND

As soon as practical

WARNING

Prepare for potential engine failure and for applying the forced landing procedure.

CAUTION

Monitor engine for power loss and rough operation that could indicate fuel starvation. If the engine is no longer producing sufficient power, then an emergency landing should be carried out.

3.15 HIGH FUEL PRESSURE

If fuel pressure increases above the upper limit: HI F-P message on RAD display

(a) LAND

As soon as possible (applying forced landing procedure)

WARNING

Possible injector failure or obstruction. Prepare for potential engine shut-down.

3.16 ENGINE FIRE DURING GROUND OPERATION

(a)	Fuel selector	OFF
(b)	Cabin heat	OFF
(c)	Brakes	APPLY

DATE: 03 December 2015

3-11

Once aircraft is stopped:

	NOTE If possible, attempt to deal with fire	using fire
(g)	AIRCRAFT EVACUATION procedure	PERFORM immediately
(f)	Ignition key	OFF
Whe	en the engine is stopped:	
(e)	MASTER BATTERY switch	OFF
(d)	Throttle	MAX PWR

3.17 ENGINE FIRE DURING TAKE-OFF

extinguisher located under the pilot seat.

If take-off can be still aborted:

(a ₁)	Throttle		IDLE
(b ₁)	Cabin heat		OFF
(c ₁)	Brakes	A	PPLY
(d ₁)	ENGINE FIRE DURING GROUND OPERATION procedure	PERF	ORM
<u>If ta</u>	ke-off cannot be aborted:		
(a ₂)	Cabin heat		OFF
(b ₂)	FLY along a short-cut traffic circuit		
(c ₂)	SELECT appropriate landing field		
<u>Afte</u> reac	r climbing to a height from which the selected landing are hed safely:	a can be	
(d ₂)	Fuel selector		OFF

(e)	FUEL PUMP switch	OFF
(f)	ALT switch	OFF
(g)	MASTER BATTERY switch	OFF
(h)	LAND with engine off	As soon as possible (applying forced landing procedure)
(i)	AIRCRAFT EVACUATION proce	dure PERFORM immediately
3.18	ENGINE FIRE IN FLIG	HT
(a)	Cabin heat	OFF
(b)	Cabin ventilation	OPEN
(c)	SELECT appropriate landing field	
<u>Whe</u>	n it seems certain that the selected l	anding area will be reached:
(d)	Ignition key	OFF
(e)	Fuel selector	OFF
(f)	Throttle	MAX PWR
(g)	FUEL PUMP switch	OFF
(h)	MASTER BATTERY switch	OFF
(i)	LAND with engine off	As soon as possible (applying forced landing procedure)
(j)	AIRCRAFT EVACUATION proce	dure PERFORM immediately

WARNING

If fire goes out, do not attempt to restart the engine.

CAUTION

If fire extinguisher is used, the cabin must be ventilated.

NOTE

If a suitable landing area is available and can be safely reached, airspeed can be increased in an attempt to extinguish the fire. Do not exceed airspeeds given for structural limitations.

3.19 FORCED LANDING WITHOUT ENGINE POWER

Preparation:

(a)	Flaps	UP
(b)	Best glide speed	ESTABLISH
(c)	Radio	TRANSMIT MAYDAY giving location and intentions
(d)	Transponder	SET 7700
(e)	FIND a suitable place to land safely, plan	to approach it upwind
(f)	Throttle	IDLE
(g)	Mixture	CUT-OFF
(h)	Ignition key	OFF
(i)	Fuel selector	OFF
(j)	FUEL PUMP switch	OFF
(k)	Seat belts	TIGHTLY FASTENED

DATE: 03 December 2015

When landing is assured:

(l) F	laps	AS REQUIRED
(m) A	ALT switch	OFF
(n) M	ASTER BATTERY switch	OFF

WARNING Prepare for immediate aircraft evacuation.

3.20 POWER-ON FORCED LANDING

Preparation:

(a)	Flaps	UP
(b)	Best glide speed	ESTABLISH
(c)	FIND the most suitable terrain to land safely, p	lan to approach it upwind
(d)	Seat belts	TIGHTLY FASTENED
Whe	en landing is assured:	
(e)	Flaps	AS NECESSARY
(f)	Ignition key	OFF
(g)	Fuel selector	OFF
(h)	FUEL PUMP switch	OFF
(i)	ALT switch	OFF
(j)	MASTER BATTERY switch	OFF

3.21 UNINTENTIONAL FLIGHT INTO ICING CONDITIONS

WARNING

Flight into known icing conditions is forbidden.

The airplane is not equipped with a de-icing system.

WARNING

In event of ice build-up in correspondence of wing leading edges, stall speed increases and stall may become asymmetric. In case of stabilator ice accretion, it may loose its efficiency, leading to lack of aircraft pitch control and loss of control.

WARNING

In case of ice build-up on the wing leading edge, some erroneous indication of airspeed, altimeter, rate of climb and stall warning should be expected.

If an inadvertent encounter with icing conditions occurs:

(a) Pitot heat

ON

(b) Altitude and flight direction
(c) Control surfaces
(c) Control surfaces
(c) Control surfaces

(d) Throttle

(e) Cabin heat

MOVE continuously to avoid locking

INCREASE to prevent icing of propeller blades

ON

3.22 RECOVERY FROM UNINTENTIONAL SPIN

WARNING All spins are prohibited.

If an inadvertent spin occurs:

- (a) Throttle
- (b) Rudder

REDUCE AS PRACTICAL

FULLY OPPOSITE to the direction of spin

NEUTRAL

(c) Control wheel CENTRALIZE AND HOLD NEUTRAL

When rotation stops:

(d) Rudder

(e) Control wheel

RECOVER SMOOTHLY

to bring the nose-up to level flight attitude. Do not exceed maximum permissible speed $\left(V_{\text{NE}}\right)$

(f) Throttle

AS REQUIRED for straight and level flight

3.23 DOOR CLOSURE FAILURE

If a door opens during take-off: ABORT TAKE-OFF

- If a door opens in flight:
- (a) Airspeed

(b) Door

REDUCE as appropriate

CLOSE AND LATCH (if necessary, yaw the airplane in open door direction)

(c) Approach speed

NORMAL

DATE: 03 December 2015

AFM 10.701-7 Section 3 **EMERGENCY PROCEDURES**

If unable to latch door in flight, or if damage occurred:

(d) LAND

CAUTION

In flight, do not allow efforts to close the door to interfere with the primary tasks of maintaining control and flying the airplane.

ALTERNATOR FAILURE 3.24

(ALT OUT message on Annunciator Panel)

- (a) ALT switch
- (b) Electrical loads
- (c) Ammeter

WARNING

Since the alternator has been switched OFF, the battery will maintain the essential load for approximately 33 minutes. Prepare to land. VHF transmission should be restricted to 6 minutes total during flight.

(d) FUEL PUMP switch	OFF unless necessary
(e) AVIONICS switch	OFF
(f) INSTRUMENT LIGHTS knob	OFF
Only for aircraft s/n 1001 and 1002	
(g) TAXI/LDG LIGHT switch	OFF unless at
	appropriate time for landing
For aircraft from s/n 1003 onwards	
(h) LDG LIGHT switch	OFF unless at appropriate time for landing
(i) TAXI LIGHT switch	OFF
For all aircraft	
(j) STALL HEAT switch	OFF
(k) PITOT HEAT switch	OFF unless necessary
(l) LAND	As soon as possible Rev. 9
-18	DATE: 14 March 2018

vulcanair aircraft V1.0

As soon as practical

OFF

REDUCE to minimum CHECK

NOTE

Operating systems allowed for the emergency phase (with battery only):

(a) PFD

- (b) COM1/NAV1/GPS equipment GTN 650
- (c) Audio Panel GMA 350

(d) Stall warning

(e) NAV Lights

(f) Taxi/Landing light on nose (if installed)

(g) Landing light on LH wing (from s/n 1003 onwards)

(h) Clock (if installed)

(i) Hourmeter

(j) Map Light

(k) Engine Indication System EDM 930

(1) GDC74A Air Data Computer

(m) AHRS GRS77 and GMU44

(n) OAT

(o) MD302 STBY Module

- (p) GTN 650 Blower
- (q) XPDR GTX 33 w/ES (or GTX 345R, if installed)

3.25 COMPLETE ELECTRICAL FAILURE

NOTE

In case of complete electrical failure, operating only standby flight instruments:

- (a) MD302 STBY Module
- (b) Magnetic compass

WARNING

Flaps cannot be lowered.

WARNING

Stall warning becomes inoperative.

Rev. 15 DATE: 21 December 2018

NOTE

The MD302 Standby Attitude Module has an integral and rechargeable battery that supplies electrical power to the unit for up to one hour.

In case of complete electrical failure or normal end-of-flight power down, the unit switches to the Power Loss Warning mode and a warning message on the instrument display appears.

Rotating and pressing the STBY control knob to highlight and select respectively the "ON" option, before the end of the (nominal) oneminute timing period, the unit will continue to operate on the standby battery for nominally one (1) hour or until the battery is exhausted.

If no action is undertaken before the end of the (nominal) one-minute timing period, the instrument will turn off automatically.

WARNING

The MD302 internal battery will recharge itself from aircraft power while in normal mode. A battery capacity check occurs each time the unit is powered on. If the battery capacity is determined to be less than 80%, there will be a battery pack warning. If the warning persists more than once in a short time, the battery must be replaced.

- THIS PAGE INTENTIONALLY LEFT BLANK -

3.26 PFD FAILURE

(a) PFD breaker

If the breaker is IN:

- (b) MD302 STBY module
- (c) Standby magnetic compass
- (d) Power lever

CHECK IN

REVERT TO

REVERT TO

SET as required (but not full forward unless required for flight phase)

(e) LAND

As soon as practical

CAUTION

In case of temporary PFD failure, the SVT feature will be unavailable. When the PFD restarts, the SVT information will be provided on PFD approximately 30 seconds after the Terrain self-test completion.

NOTE

COM 1/COM 2, NAV 1/NAV 2 and GPS remain still operative.

3.27 AIRSPEED FAILURE

If an erroneous airspeed indication is suspected or a FAIL RED X appears on the airspeed indicator on the PFD:

(a) ADC breaker	CHECK IN
If the breaker is IN:	
(b) Standby airspeed indicator	REVERT TO

3.28 ALTITUDE FAILURE

If an erroneous altitude indication is suspected or a FAIL RED X appears on the altitude indicator on the PFD:

(a) ADC breaker	CHECK IN
If the breaker is IN:	

(b) Standby altitude indicator

REVERT TO

3.29 ATTITUDE FAILURE

If an erroneous attitude indication is suspected or a FAIL RED X appears on the attitude indicator on the PFD:

(a) Standby attitude indicator	REVERT TO
(b) AHRS breaker	CHECK IN
If the breaker is IN:	
(c) Standby attitude indicator	USE as sole mean to determine a/c attitude

(d) IMC

(e) LAND

As soon as practical

EXIT

CAUTION

In case of temporary loss of Attitude information (AHRS failure), the SVT feature will be disabled. When the AHRS restarts and realigns, wait for approximately 3 minutes after the AHRS self-test completion before performing the SVT activation procedure reported into the document "Garmin G500 Pilot's Guide" p/n 190-01102-02 or 190-00601-02, as applicable.

3.30 OAT SYSTEM FAILURE

If an erroneous OAT indication is suspected or a FAIL RED X appears on the OAT indicator on the PFD:

(a) Flight in freezing moisture condition AVOID

If icing condition are inadvertently encountered:

(b) Unintentional Flight Into Icing Conditions procedure

PERFORM

3.31 VERTICAL SPEED FAILURE

If an erroneous vertical speed indication is suspected or a FAIL RED X appears on the airspeed indicator on the PFD:

(a) Altitude indicator

USE timed rate of change of altitude to determine vertical speed

3.32 HSI FAILURE

If an erroneous heading indication is suspected or a FAIL RED X appears on the HSI on the PFD:

(a) Standby magnetic compass	REVERT TO
(b) AHRS breaker	CHECK IN
(c) GPS/NAV 1 breaker	CHECK IN
If the breakers are IN:	
(d) Standby magnetic compass	USE as sole mean to determine a/c heading

3.33 RATE OF TURN INDICATOR FAILURE

If an erroneous rate of turn indication is suspected or a FAIL RED X appears on the HSI on the PFD:

(a)	Compass	USE to determine turn rate
3.34	MFD FAILURE	
(a)	GTN 650	REVERT TO
3.35	BOTH PFD AND MFD FA	ILURE
(a)	PFD Breaker	CHECK IN
If the	e breaker is IN:	
(b)	MD302 STBY module	REVERT TO
(c)	Standby magnetic compass	REVERT TO
(d)	GTN 650	REVERT TO
(e)	Power lever	SET as required (but not full forward unless required for flight phase)
(f)	LAND	As soon as possible

(a) GPS/NAV 1 breaker

If the breaker is OUT, also NAV 1 won't be operative:

- (b) NAV 2
- (c) CDI softkey

In case of temporary loss of GPS signal (GTN650 failure), the SVT feature will be unavailable. When the GPS signal is recovered, the SVT information will be provided PFD on approximately in 2 minutes.

CAUTION

3.37 **NAV 1 FAILURE**

If VLOC receiver message is present in the MSG window on GTN 650:

(a)	GPS/NAV	1	breaker

If the breaker is IN:

(b) NAV 2

(c) CDI softkey

3.38 NAV 2 FAILURE

If VLOC receiver message is present on GNC 255:

(a) NAV 2 breaker

If the breaker is IN:

- (b) NAV 1
- (c) CDI softkey

PRESS to cycle through navigation sources

Rev. 5 DATE: 04 August 2017

vulcanair aircraft V1.0

PRESS to cycle through navigation sources

CHECK IN

REVERT TO

CHECK IN

REVERT TO

PRESS to cycle through navigation sources

REVERT TO

CHECK IN

3.39 COM 1 FAILURE

If the COM message alert appears on GTN 650:

(a) COM 1 breaker	CHECK IN
If the breaker is IN:	
(b) COM 2	REVERT TO
3.40 COM 2 FAILURE If the COM message alert appears on GNC 255:	
(a) COM 2 breaker	CHECK IN
If the breaker is IN:	
(b) COM 1	REVERT TO
3.41 GLIDESLOPE FAILURE	

in ite ob appears on the ind.	
(a) Navigation frequency	CHECK
If NO GS message still remains:	
(b) NAV 2 navigation	REVERT TO
If NO GS message still remains, when appropriate:	
(c) Non Precision Approach	PERFORM

3.42 TOTAL ENGINE PARAMETERS FAILURE

(a) EIS breaker

If the breaker is IN:

(b) Engine RPM

MATCH by aural noise and REFER to position of power levers (throttle and RPM)

To change the flight condition:

- (c) Power lever
- (d) LAND

SET as required

As soon as possible

3.43 **BUS BAR VOLTAGE ALERTS**

If voltage readout becomes red ("Low Warning" condition) on EIS:

3.26	DATE: 03 December 2015
(c) ALT switch	CHECK ON
If breaker is IN:	
(b) ALT FIELD breaker	CHECK IN
If message is present:	
(a) ALT OUT message on annunciator panel	CHECK
3.44 AMMETER FAILURE	
(c) LAND	As soon as possible
If switch is ON and breaker is IN:	
(b) ALT FIELD breaker	CHECK IN
(a) ALT switch	CHECK ON

CHECK IN

If switch is ON:

(d) Alternator Failure procedure

3.45 MAP INDICATOR FAILURE

(a) RPM and fuel flow indicators

USE as MAP directly linked parameters

MAINTAIN setting

SET as required

PERFORM

3.46 RPM INDICATOR FAILURE

- (a) Propeller
- (b) Throttle

3.47 CHT INDICATOR FAILURE

(a) Remaining CHT gauges USE to determine CHT operating range

If all CHT fail:

(b) Fuel flow indicator

USE as CHT directly linked parameters

3.48 EGT INDICATOR FAILURE

(a) Remaining EGT gauges

USE to determine EGT operating range

If all EGT gauges fail

(b) CHT and fuel flow indicators

USE as EGT directly linked parameters

3.49 FUEL FLOW INDICATOR FAILURE

(a) Fuel quantity

MONITOR for regular consumption